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Abstract 

The statistical dynamical theory [Kato (1980). Acta 
Cryst. A36, 763-769] is reformulated on a sounder 
basis. The starting wave equation is free from the 
so-called Takagi-Taupin (T-T) approximation. 
Functional calculus, an operational technique and 
the concept of the Green function are used as mathe- 
matical tools. Integro-differential equations are 
derived for the coherent (averaged) wave field and 
the energy flow vector of the incoherent intensity field. 
The formulae are exact except for assuming a model 
in which the fluctuation of the lattice phase is a set 
of Gaussian random variables defined in three- 
dimensional space. The general framework of the 
previous theory is justified within the T-T approxima- 
tion. In general, however, new terms must be added 
and some terms have to be revised by introducing a 
Green function matrix. The theory may be used as a 
starting point when any approximate theory is 
developed for practical purposes. 

1. Introduction 

The present author published a series of papers in 
order to unify primary and secondary extinction on 
the theoretical basis of optical coherence (Kato, 
1976a, b, 1979, 1980a). Later, the theory was reformu- 
lated with a wider scope of diffraction such as the 
statistical characterization of crystals including invis- 
ible and/or  indistinguishable lattice defects (Kato, 
1980b, c). The theory, at present, is called the statis- 
tical dynamical theory. 

In these studies, it was pointed out that the statis- 
tical nature of crystals is conveniently characterized 
in terms of the average of the lattice phase factor and 
its multiple correlation functions at different spatial 
positions. The observable intensity was postulated to 
be an ensemble average of possible intensities expec- 
ted from the wave equation. Then it was shown that 
the observable intensity consists of coherent and inco- 
herent parts. They can be represented in a formal 
manner by the statistical quantities of the wave field; 
namely the direct average of the field and the correla- 
tion function of the mutually complex conjugate 
fields. Thus, the problem was reduced to deriving the 
statistical quantities of the wave field from those of 
the lattice phase factor. 
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The attempt was partially successful but not always 
satisfactory. Moreover, a few intuitive arguments and 
even dubious treatments were introduced for develop- 
ing an approximate theory. Some of them have been 
criticized by a few authors (A1-Haddad & Becker, 
1988; Guigay, 1989). 

In these circumstances, the present paper intends 
to reformulate the theory on a sounder basis. In the 
formulation, functional calculus, an operational tech- 
nique and the concept of the Green function (propa- 
gator) are used. In fact, such methods have been 
applied to wave propagation in turbulent ionosphere 
and acoustic problems (e.g. Beran, 1968). In these 
problems, however, one-component (plane-wave- 
like) waves are dealt with and the statistical variable 
characterizing the medium is the refractive index. In 
the present work, we are concerned with two- 
component (Bloch-wave-like) waves and the statis- 
tical variable is the lattice phase. 

In § 2, a brief review will be presented on mathe- 
matical subjects.* In §3, starting from a wave 
equation which is free from the so-called Takagi- 
Taupin approximation, the exact equation for the 
characteristic functional (CFAL) of the wave field is 
derived. In § 4, the integro-differential equations are 
derived for both the averaged (coherent) wave field 
and the incoherent intensity field. Here, no approxi- 
mation is made except that the model of a Gaussian 
random variable is assumed for the lattice phase at 
a certain stage of the theory. In the final section, the 
previous theories (Kato, 1980b) are discussed in the 
light of the present formalism. 

2. The mathematical background 

2.1. The case of one random variable 

First, we shall show some elementary results. When 
a random variable (RV) q is specified through the 
probability density p(q), the characteristic function 
(CF) is defined by 

Z(p)  = (exp (ipq)) (2.1 a) 

with the auxiliary condition 

Z(O) = 1. (2.1b) 

* The present author owes a great deal to the book of Furutsu 
(1982). Some details are described in the book of Beran (1968) 
and the papers of Furutsu (1972, 1975). 
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Here, ( )  implies the average operation for the 
expression included in it and p is the conjugate vari- 
able of q. In other words, Z(p) is the Fourier trans- 
form of p. The condition (2.1b) is equivalent to unit 
normalization of p. 

Once the CF is,obtained, one can calculate the nth 
moment from 

(q")=[(O/iOp)"]Z(p)lp=o. (2.2) 

The notation [[p=0] implies taking the limit at p = 0 
after the manipulation on the left-hand side. As a 
consequence of the relation (2.2), one can obtain the 
average of any analytic function f(q) as 

(f(q))=f[(O/iOp)]Z(p)lp= o. (2.3) 

Furthermore, when f(q) has the Fourier transform 
f(P), 

(f(q))=(2.#)-l~f(p)Z(p)dp. (2.4) 

Next, some results of an operational technique are 
explained. Incidentally, the technique is very power- 
ful when the probability density p is not known 
explicitly. Our problem is one such case. An operator 
can be defined from any analytic function of p by 
the rule 

ip~O/Oc (2.5) 

where c is a dummy variable associated with q. Then 
we define an operator Z from Z(p).* It has the 
property 

A 

Zf( c) = (exp [ (O/ Oc)q]f ( c)) 

= (,~=o (1/ n !)( q)"(O/Oc)"f( c) ) 

=(f(q+c)). (2.6) 

Then, we have 

(f(q))= Zf(c)lc= o. (2.7) 

For later purposes, we also introduce the operator 

= 2 c 2 - ' .  (2.8) 

In symmetrical manner, the operator/3 can also be 
defined by 

A A ,i, 

p=Z(O/iOc)Z -~ (2.9) 

because Z, and a/Oc must be commutative. We define 
also O and O~ by the rule (2.5) or (2.9) through the 
cumulant function and its derivative: 

O(p) = log Z(p) (2.10a) 

O~(p) = (0/iOp)O(p) 

=(OZ/iOp)/Z(p). (2.10b) 

* Hencefor th ,  operators  are denoted by ^ 

According to the operator algebra familiar in quan- 
tum statistical mechanics (e.g. Louisell, 1973), we 
have 

f(~)= Zf(c)Z -I (2.11a) 

= c +  o , ( o l  ioc).  (2.11 b) 

By combining (2.6) and (2.11 a), it follows that (f(q + 
c)) = f (~)Z .  As a result, we have the useful relation 

( (q+c) f (q+c))=~f(4)2:~( f (q+c))  (2.12) 

which gives (qf(q)) when if(q)) is known in the limit 
of c=0 .  

When 6)(p) has a quadratic form with respect to 
p and (q )=  0, namely 

(9(p) = - (  1/2)(q2)p 2, (2.13) 

we have 

4= c+(q2)(d/Oc). (2.14) 

In fact, it is the case that p(q) [also Z(p)]  has the 
Gaussian form. In the operator formalism, (2.14) is 
used as the definition of a Gaussian random variable 
(GRV). 

2.2. The case of N discrete R V's 

It is a formal matter to define the CF by 

Z{pj}= exp i Y. pjq~ (2.15a) 
j = l  

Z{0}= 1. (2.15b) 

Corresponding to (2.2), the {nj}th moment can be 
given in the form 

N 

/z{nj}= 1-I (O/iOpj)~Z{pj} ~pD=o. (2.16) 
j = l  

We can also write down similar formulae correspond- 
ing to (2.3) and (2.4). 

The operational technique can be developed in the 
same manner. The rule (2.5) is generalized as 

ipj-~ O/Ocj (2.17) 

where {cj} are dummy variables associated with {tb}. 
The operator corresponding to the CF has the form 

Z= Z{O/ iacj}. (2.18) 

We introduce functions similar to (2.10a) and (2.10b), 

6){pj} = log Z{pj} (2.19a) 

~)r{pj}=(O/iOpr)O){pj}. (2.19b) 

Through these functions, the important operators { t~,} 
are defined as 

A A 

Ct, = Zcr Z-I (2.20a) 

= c, + Or{O~ iOcj}. (2.20b) 
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Corresponding to (2.6) and (2.12), we have the 
relations 

2f{ cj} = (f{ q~ + cj}) (2.21) 

( ( qr + Cr)f{ qj -b Cj}) = ~rf{ ~j},Z 

= q r<f{q j+  cj}). (2.22) 

If all of the {qj} are GRV and the averages of {(qj)} 
are zero, the operator qr has the explicit form 

N 
qr= ¢r-~ ~ (qrqj)(O/Ocj). ( 2 . 2 3 )  

j = l  

2.3. The case of R V's defined on a continuous space 

In this subsection, for the sake of continuation of 
the argument, we shall consider RV's defined on 
one-dimensional space. Then, the continuous coor- 
dinate (s) corresponds to the index (j)  in the previous 
case and the total RV's can be represented by a 
function q(s). 

It seems natural to write formally the following 
expression in the place of (2.15a). 

Z i p ]  = (exp [i I p(s)q(s) ds]) (2.24) 

where p(s) is the conjugate variable of q(s) specified 
at the same point s. The total of the variables can be 
regarded also as a function of s. However, we must 
be careful about the average operation. 

For a set of discrete variables, the average of a 
function F is given by 

N 
(F{q~}) = 1-I S P{qj}F{cb} dqj. (2.25a) 

j = l  

Now, not only is N infinite, but the product index j 
is continuous so that we need the concept of func- 
tional calculus. According to the mathematical con- 
vention, we shall write the average as 

(F{q(s)})= S ~q[p{q(s)}F{q(s)}] (2.25b) 

where S @q is called functional integration, which 
means the integration over all possible forms of q(s). 
It is worth noting that the outcome after the manipula- 
tion is a number, as in the case of ordinary integration. 

In (2.24), exp [ ] stands for the function F[q(s)] 
to be averaged. It includes the function p(s). There- 
fore, the outcome number depends explicitly upon 
the form of p(s). For this reason, it is denoted by 
Z[p] and called the 'functional ofp(s) ' .*  For random 
variables defined on a continuous space, we must 

* 'Function' is defined by the mapping [a number-+ a number] 
whereas 'functional' implies the mapping [a function ~ a number]. 
It is the usual convention to use [ ] for denoting the original 
function, as has been done without notice in (2.24). A concise 
review of functional calculus is given in the book of Ryder (1985). 
More can be seen in the book of Beran (1968). 

consider the characteristic functional (CFAL) in 
place of CF. 

The next problem is to obtain a similar expression 
to (2.16). For this purpose, the functional derivative 
is introduced. It is the ratio of the functional variation 
6Z[p] and an infinitesimal variation 6p(s) which 
results in 6Z. For (2.24), it is 

8Z[p]/6p(s)= i(q(s) exp [i ~ p(s')q(s') ds']). 

(2.26) 

It should be noted that the random variable q(s) at 
the beginning of ( ) and the differential variable p(s) 
on the left must be conjugate to each other and must 
be specified at the same point in s space. 

We define the multiple correlation function (COF) 
by 

M(s , , s2 , . . . , s , )=(q(s l )q ( s2) . . .q ( s , ) ) .  (2.27) 

For the special case in which s~ = s2 = . . . =  s,, M(  ) 
is called the autocorrelation function. Averaged quan- 
tities with a mixed character are also conceivable. 
However, we shall not distinguish them, unless other- 
wise stated. Obviously, the COF is equivalent to the 
moment in the discrete case. Sometimes the notation 
M, is used as an abbreviation. We can easily obtain 
the expression 

6"Z[p] I (2.28/ 
M"=(1/i)"6p(s,)6P--~2) ]-. SP(S.) p=O 

which constitutes the generalization of (2.16). 
In the next stage, we must modify the formulae of 

the operational technique described in § 2.2. Since 
the modification is understandable as a matter of 
formality, here we shall present a glossary of 
equations. 

The correspondence rule: 

ip(s)~6/6c(s)  [2.17] (2.29) 

~(s)= Zc(s)Z -1 [2.20a] (2.30a) 

=c(s)+O,[6/i6c;s]  [2.20b] (2.30b) 

Ol[p;  s]=6(logZ)/ i6p(s)  [2.19] (2.31) 

((q(s)+ c(s))f[q+ c]) 

--- ~t(s)(f[q+ c]}. [2.22] (2.32) 

When t~ is a GRV operator, 

~(s) = c(s)+ S ds'(q(s)q(s'))(6/ 6c(s')). 

[2.23] (2.33) 

The equation numbers in [ ] refer to the relevant 
equations in § 2.2. Bold letters are used for functionals 
when the argument (function) is suppressed. Hence- 
forth, this convention will be used. 
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3. The wave equation and the related 
characteristic functionals 

3.1. The wave equation 

So far the mathematical subjects of RV's and the 
operational technique have been described. Now, we 
shall proceed to diffraction physics. We consider a 
wave field which obeys the coupled equations 

(A + k2)do + ~M_sdg = 0  (3.1a) 

(A+kE)dg+~*Mgdo=O (3.1b) 

where k is the wave number in the crystal and M+g 
are proportional to the structure factor of the ±f] 
reflection.t The wave field has two components d0(x) 
and dg(x) which are the transmitted and Bragg- 
reflected waves. They are treated as complex fields 
in three-dimensional space x, • is called the lattice 
phase factor which will be explained later [see 
(3.5a)]. 

The equations (3.1) can be derived straightfor- 
wardly from the fundamental wave equation for dis- 
torted crystals (e.g. Kato, 1974) by equating separately 
the terms oscillating with approximate wave vectors 
~,o and k,~ = k,o + 2 ~ ( I k o l  = = k). The procedure 
implies neglect of the Umklappung process (Kato, 
1973). Also, in the term proportional to the polariza- 
bility of the crystal, an approximation is made to 
neglect the spatial variation of • and the amplitudes, 
ao and ag, as well as the polarization factor because 
the term concerned is itself very small. 

Each component of the wave field can be written 
in the form 

do(x) = ao(X) exp i(k,o x) (3.2a) 

dg(x) = ag(x) exp i(ka x). (3.2b) 

Then, in the case of the O wave, for example, it 
follows that 

(A + k2)do(x)= {2i(koV)ao + Aao} exp i(kox) (3.3) 

where the differential operators V and A are to be 
applied only to the amplitude ao(X). Therefore, (3.1) 
are equivalent to the equations 

2ikOao/OSo + Aao + (lbM_gag = 0 (3.4a) 

2ikOag/OSg + Aa~ + cI)*Me, a o = 0 (3.4b) 

where s o and sg are the coordinates along the direc- 
tions ko and kg respectively. In this case, the phase 
factor exp [+2¢ri(f~x)] in M±g can be dropped. 

Equation (3.4) has great merit because one need 
not bother with the phase factor of the carrier waves. 
Nevertheless, we shall proceed with (3.1) because 
their form is more familiar in applied mathematics. 
The equation of Takagi-Taupin (T-T)type is derived 

t In terms of K~.g defined by equation (2) of an earlier paper 
(Kato, 1976a), 

M±g = (2kK±g) exp [+2~ri(f~x)]. 

by neglecting Aao and Aa~. The implication of retain- 
ing them in (3.4) and implicitly in (3.1) will be dis- 
cussed further in § 5. 

The wave equation includes the complex lattice 
phase factor defined by 

qb(x) = exp [27ri(f~u(x))] (3.5a) 

where f~ is the reflection vector of the standard perfect 
crystal and u(x) is the displacement vector of the 
lattice point. In general, (~ )  is not zero, so that a 
new variable Q(x) is introduced by 

• (x) -- E + Q(x) (3.5b) 

where E denotes (~ )  and (Q) is zero. More will be 
mentioned on this point at the beginning of § 4. It 
can be mathematically proven that, if (f~u) is a RV, 
Q is also a complex RV. 

For our purpose, it is more convenient to start with 
the slightly more general equations 

(A+k2)do+(E+Q+C)M_~dg=Jo (3.6a) 

(A + kE)dg +(E + Q* + C*)M~do= Jg. (3.6b) 

As will be seen later, C(x) is a dummy function 
introduced for the operator technique, and Jo(x) and 
Jg(x) are source functions of do and dg at the present 
stage. Later, they will be assigned to the conjugate 
functions associated with do and d~, respectively. 
After calculating any statistical quantity such as the 
correlation function of the wave fields, the physical 
value is given by taking the limit at C = 0 and Jo-- 
J~=0. 

3.2. The characteristicfunctionals 

First, the CFAL of Q(x) and Q*(x) are considered. 
We need a generalization in two aspects. (i) Q and 
Q* are functions of a point x in 3D space. Clearly, 
it is enough to replace s by x in the results listed at 
the end of § 2.3. (ii) There are two kinds of RV's Q(x) 
and Q*(x). They can be dealt with separately by 
introducing the conjugate functions, P(x) and P*(x), 
respectively. Alternatively, one may take the real and 
imaginary parts of Q as RV's. The final result, 
however, is not changed. Thus, an adequate CFAL 
for Q and Q* has the form 

ZIP* ,  P] = (exp [i ~ (P*(x)Q*(x) 

+ P(x) Q(x)) dx]) (3.7a) 

z [ 0 , 0 ] =  1. (3.7b) 

Similarly one can define the CFAL for the wave 
fields (do and dg) in the form 

wU*, J*; ~o, ~] 
= (exp [ice ~ {J*(x)d*(x) + J*(x)d*(x)  

+Jo(x)do(x)+Jg(x)dg(x)}dx]) (3.8a) 

W[0, 0; 0, 0] = 1. (3.8b) 
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Here, the coefficient a is introduced to make the 
integration dimensionless. We distinguished the two 
kinds of CFAL by Z and W. However, also in the 
case of W, the average ( ) has to be taken ultimately 
over the functions Q(x) and Q*(x), on which do and 
dg etc. depend in the sense of a functional. 

For abbreviation, Z[P] and W[J] are used for the 
expressions (3.7a) and (3.8a), respectively. Also, 
exp [P] and exp [J] are employed for the expression 
to be averaged in the respective cases. 

As for the procedures discussed in § 2, the following 
operators are defined: 

Z=Z[8/ iSC*(x) ,8/ iSC(x)]  (3.9) 
A A A 

Q(x)=ZC(x)Z- '  (3.10) 

with their complex conjugates. Then one can see, as 
the extension of (2.32), 

((Q(x)+C(x))f[Q+C, Q*+ C*]) 

=(~(x)(f[Q+C, Q*+ C*]). (3.11) 

3.3. The fundamental equation for W[J] 

It is straightforward to obtain the following results 
by taking the functional derivatives of (3.8a): 

(6/SJo(x))W[J]=io~(do(x)exp[J]) (3.12a) 

(6/SJg(x))W[J]=ia(dg(x)exp[J]). (3.12b) 

If one takes ds(x) exp [J] in the place of the func- 
tional f [ Q + C ,  Q * + C * ]  in the relation (3.11) and 
with the use of (3.12b), it follows immediately that 

ia((Q(x) + C(x))ds(x) exp [J]) 

= iaQ(x)(dg(x) exp [J]) 
A 

= Q(x)(6/6Jg(x)) W[J]. 

Similarly, we have 

ict((Q*(x) + C*(x))do(x) exp [J]) 

= iaQ*(x)(do(x) exp [J]) 

= O*(x)(8/8L(x))  w U ] .  

(3.13a) 

(3.13b) 

Operating with (A + k 2) on the expressions (3.12a) 
and (3.12b) and consulting (3.6a) and (3.6b) and 
(3.13a) and (3.13b), we finally obtain the funda- 
mental equations for the CFAL, W[J*, J*; J o, Jg]; 

[(a  + k2)(8/8L(x))  

+ M_g( E + (~(x))( 6 / 6Jg (x)) - iaJo ] W[ J] = 0 

(3.14a) 

[(A + k2)(6/33~ (x)) 

+ Mg(E + (~*(x))(8/6Jo (x)) - iaJg] W[J] = O. 

(3.14b) 

The functional derivatives (8/Mo(X), 6/Ms(X)) can 

be read as the operators (tto(X) and ds(x)) onto W[J], 
respectively. Then each term in [ ] has a one-to-one 
correspondence with each term in the wave equation 
(3.6). 

The equation can be used to obtain systematically 
the relation among the multiple COF's of the wave 
field. 

4. The statistical intensity 

The crystal is statistically characterized by the multi- 
ple COF's of the lattice phase factor, such as 

(~(x))  = (qb*(x)) = E (4.1a) 

(~2(x)) = (~*2(x)) = E2 (4.1 b) 

( ¢,(xO ¢,*(x9) = ( ¢,(x9 ¢,*(x,)) 

=EE+(Q(xl)Q*(x2)) (4.2a) 

= E2+ (1 - EE)r(x~-x2) (4.2b) 

( ~ ( X l )  (~ (X2)) ---~ ( (~*  (X2)(~ :g(Xl )  ) 

=EE+(Q(xl)Q(x2)) (4.3a) 

= EE+(EE-EE)tr(xl-x2) (4.3b) 

and the higher-order COF's. Here, E and E 2 a r e  real 
constants and r and tr are real functions of x l -  x : ,  
provided that the statistical homogeneity and isotropy 
are fulfilled in the crystal. Also, r(0) = ~r(0) = 1, which 
are equivalent to the condition of (qb(x)qb*(x))= 1 
and (4.1b), respectively. E and r(x) were called static 
Debye-Waller factor and intrinsic correlation func- 
tion, respectively (Kato, 1980b). It is outside the 
scope of this paper to derive them from the lattice 
distortion. 

In general, the statistical properties of the wave 
field are also characterized by their multiple COF's 
defined as follows: 

first order: 

(do(x)), (dg(x)) and c.c. (4.4a, b) 

second order: 

(d*(xl)do(x2)), (d*(xOdo(x2)) (4.5a, b) 

(do*(x~)dg(x2)), (d*(xz)dg(x2)). (4.5c, d) 

The higher-order COF's may not be relevant to prac- 
tical experiments in the present state of the art of 
X-ray diffraction. 

Our aim is to find these COF's in terms of E and 
r(x) etc. For this purpose, we shall define the Green 
functions of the wave equation (3.6). They are the 
solutions for special forms of Jo(x) and Jg(x); namely 
a point source at Xo. We shall write them as 

Goo(X Xo) = do(x) ,  G~o(XlXo) = a s ( x )  

for Jo(x)=6(X-Xo) and Jg(x)=0  

(4.6a, b) 
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Go,(xlxo) = ao(X), % ( x l x o )  = a (x) 
for Jo(x)=0 and Jg(x)=6(X-Xo). 

(4.6c, d) 
Because our wave equation is linear, it is straight- 
forward to obtain the solution for general Jo(x) and 
Jg(x) as follows: 

do(x) = j" { Goo(XlXo).1o(Xo) 
+ Gog(XlXo)Jg(xo)} dxo (4.7a) 

d (x) = f { O o(X I Xo)]o(Xo) 
+ Ggg(XlXo)Jg(xo)} dxo. (4.7b) 

We may write these in a neat form as 

d(x) =~ G(xlXo).J(xo)dx o (4.7c) 

where d and J are 2-component column matrices and 
G is a 2 × 2 square matrix, the elements being specified 
by o and g. The dot indicates the matrix product. 

4.1. The average wave field 

By virtue of (4.7c), the problem of obtaining the 
average fields (4.4a) and (4.4b) is reduced to finding 
the statistical Green function (SGF) (G(xlxo)). By 
definition, the Green function must satisfy the matrix 
equation 

L(x). C(xlxo)= $(X-Xo)l (4.8) 

where I is the unit diagonal matrix. The matrix 
operator L(x) is decomposed as 

where 
L(x) = Lo(x) + M(x). Q(x) (4.9)t 

( A + k 2 EM_g(x)'~ 
L°(x) = \EMg(x ) A+k 2 ,] (4.10a)f 

M ( x ) = ( M o ( X )  0 ) ( 4 . l O b )  
Mg(x) 

( 0 (Q(x) + C(x))) 
Q(x)= (Q*(x) + C*(x)) 0 " 

(4.10c) 

In order to obtain the equation for SGF we shall 
take the average of (4.8). With (3.11), it follows that 

(Q(x).G(xlxo))=(~(x).(G(xlxo)) (4.11a) 
where 

0(x) = ( 0 0(0x) ) (4.lab) 
O*(x) 

Thus, SGF satisfies the equation 

[Lo(x) + M(x). 0(x)] • (G(x Xo)) = 6(X-Xo)l. 
(4.12a) 

f L and Lo are in fact differential operators. Since, however, 
they have nothing to do with the operator technique developed 
previously, the notation ̂  is not used. 

With (4.7c), we have the equivalent equation for the 
average field, 

^ 

[Lo(x)+M(x). Q(x)].(d(x))=[[J(x)]]. (4.12b) 

We may omit [[ ]] when no external source exists at 
x. These equations are exact and have the same style 
as the original equation (4.8) and equation (3.6), 
respectively. Now, however, the function Q(x) + C(x) 
is replaced by the operator. 

In 6rder to obtain a concrete result, we shall take 
the Gaussian model for RV's, Q(x) and Q*(x). With 
this model, the corresponding operators must have 
the form 

(~(x) = C(x) +J dr(Q(x)Q(6))(8/rc(6)) 

+~ dr(Q(x)Q*(6))(6/sC*(6)) (4.13a) 

Q*(x) = C*(x) + ~ dr(Q*(x)Q*(6))(6/sC*(6)) 

+~ dr(Q*(x)Q(6))(6/SC(6)). (4.13b) 

These can be derived straightforwardly as an 
extension of the relation (2.33) when CFAL has the 
form (3.7a). 

The functional derivatives in (4.13) apply to 
(G(x IXo)). They have the following expressions (after 
a little cumbersome manipulation which is explained 
in the Appendix). 

(s/sc(6)(G(x I Xo)) 

=-M_g(6)<G(xr ) . (00  10).G(rxo)> (4.14a) 

(s/sc*(6)(C(x I Xo)) 

-- -M~(6)(c(xlr). (~ °0). c(rlxo)). (4.14b) 

Based on these preparations, the matrix elements 
of M.  Q(x). (G(xlxo)) can be calculated explicitly. 
Then, SGF obeys a kind of integro-differential 
equation: 

Lo. (G(xlxo)) 
=J'(R(xlr).G(6 Xo))dr+S(X-Xo)I. (4.15a) 

Returning to the wave field [cf. (4.7c)], we also have 
the equation 

Lo(d(x))= I (R(xl~). d(~)) d~+~J(x)~. (4.15b) 
In these equations, the matrix R is defined by 

Roo(X 6) = M_g(x)Mg(6)(Q(x)Q*(6))Ggg(x 6) 

(4.16a) 

Rog(X 6) = M-g(x)M-g(6)(Q(x)Q(6))Ggo(X[~) 

(4.16b) 

R~o(xlr) = Mg(x)Mg(6)(Q*(x)Q*(6))Gog(X 6) 

(4.16c) 
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Rg~(xl ~)= Mg(x)M_g(~)(Q*(x)Q(~))Goo(X[t~). 
(4.16d) 

Here, the terms proportional to C(x) and C*(x) are 
dropped. 

In essence, the right-hand side of (4.15) represents 
statistical effects of the scattering processes at x and 

on the wave equation. The four processes conceiv- 
able, each corresponding to one matrix element, are 
shown diagrammatically in Fig. 1. In general cases, 
the position g is arbitrary within the effective range 
of the correlation between Q(x) and Q(~) or Q(x) 
and Q*(~j). We shall discuss this point in § 5.3. 

4.2. Energy transfer equations 

4.2.1. The flow vector and the conservation law. We 
shall define the flow vector associated with each wave 
field as 

Fo =(do* grad do-do grad d*o)/2i (4.17a) 

Fg=(d* grad dg-dg grad d*)/2i. (4.17b) 

Meanwhile, the argument x will be suppressed. If d 

(a) 

/ 
/ 

• : Ggg 
/ 

x / 

~-do(X) 
d~(¢ )  

/ "  

"• G o o  

i Ggg 

~.. v 
x 

(b) 

. ~  do(~) 

•° 

• "'" G o g  

~. v g 

(c) (d) 

, 

• ,.," Gg o 
,." 

, "  
X ," 

~-do(x) 

Fig. 1. Four types of scattering processes at x and ~. Each corre- 
sponds to the matrix element of R [see (4.16)]. The optical path 
(broken line) from ~ to x can be arbitrary within the range of 
intrinsic correlation of the lattice phases at the two points. The 
figures in the blocks illustrate the optical paths assumed in the 
previous papers (see § 5.3). The vertical and horizontal lines 
correspond to O and G waves. (a) Rod, ( b ) Rgg, ( c) Rgo, ( d) Rog. 

is a solution of the original wave equation (3.6), it 
follows that 

div Fo=(i/2)k2(d*odo)+(i/2)M_g(E + Q+ C) 

X ( d o * d g ) + ~ S o ~ + c . c .  (4.18a) 

div Fg=(i/2)kE(d*dg)+(i/E)Mg(E +Q* +C*) 

x (d*do)+~Sg]+c.c. (4.18b) 

where 

So=(-i/2)d*oJo, Sg=(-i/2)d*Jg. (4.19a, b) 

Fo and Fg are real vectors. Moreover, if the crystal 
is non-absorbing [k real; Mg* = M_g] and no external 
source exists [Jo = Jg = 0], the total of the flow vectors 
satisfies the conservation law 

div ( Fo + Fg ) -- 0. (4.20) 

Therefore, the expressions (4.17) are physically 
acceptable as the flow vector. Equations (4.18) are 
called the energy transfer equation in this paper. 

When we adopt the form (3.2) for the wave func- 
tion, it turns out that 

div Fo= 2ik(O/OSo)(ao*ao) 

+(a*dao-aodao*) (4.21a) 

div Fg = 2ik(O/OSg)(a*ag) 

+(a*zaag-agAa*). (4.21b) 

By equating (4.18) and (4.21) and consulting the 
expression of M±g in the footnote on p. 4, the 
equivalent energy transfer equation to (4.18) can be 
obtained in terms of the amplitudes ao and ag and 
their complex conjugates. The neglect of the second 
term on the right-hand side of (4.21) will give the 
formulae (T-T approximation) used in the previous 
work. 

The ensemble average of (4.18) will give the relation 

div (Fo)= ( i/2)k2( d* do)+ ( i /2)M_g(E + Q.) 

x (d*dg)+~(So)~+c.c. (4.22a) 

div (Fg) = ( i/2)k2(d* dg)+ ( i/2)Mg( E + Q.*) 

x (d*gdo)+~(Sg)~+c.c. (4.22b) 

The average operation does not break the conserva- 
tion law. 

We also define similar flow vectors associated with 
the average field: 

F~o=((do*) grad (do)-(do) grad (d*))/2i (4.23a) 

F~=( (d*)  grad (dg)-(dg) grad (d*))/2i. (4.23b) 

They are called the coherent part of the flow vector 
and satisfy the relations 

div F~o=(i/2)kE(d*)(do)+(i/2)M_gE(d*)(dg) 

+(i/2)M_g(d*)t~(dg)+~(So)~+c.c. (4.24a) 
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div Fg= ( i/2)k2(d*g)(dg)+ ( i/2)MgE(d*g)(do) 
+(i/2)Mg(d*)O*(do)+~(Sg)]+c.c. (4.24b) 

It is worth noting that this part does not satisfy the 
conservation law even when the crystal is non- 
absorbing because^(d*) and (d*) do not commute 
with the operator Q. 

We shall also define the incoherent part of the flow 
vector by the relations 

C Fo=(Fo)-F~o, F~=(Fg)-Fg. (4.25a, b) 

4.2.2. The flow vectors for the GR V model of Q and 
Q*. Since the operator Q is linear with respect to 
the functional derivatives ~5/,5C(~) and ,5/,5C*(~), it 
follows that 

O(d*dg)=((Qd*)dg)+(d*(Odg)). (4.26) 

On the other hand, (Q'do) and ((~dg) multiplied by 
a proper factor of M±g have been obtained in terms 
of the matrix R(xl~ ) [see (4.16)]. With these results, 
(4.22) can be rewritten in the form 

div = A(x)+ B(x)+ To(x)+ T(x) (Fo)~ 
div (Fg)] 

+~(S)~ + c.c. (4.27) 

where 

( EM_g(x)(Iog(X x))~ (4.28a) 
A ( x ) = ( i / 2 ) \  EMg(x)(Igo(X x)) ] 

B(x)=(i/2) f d~(S,(x)i~)(I°g(Xl~)))> (4.28b) 
I o(Xl 

2i(Ioo(X x))\ 
To(x)=(i/2)k ~(I~(xlx))J (4.29a) 

(ioo(xl q 
T(x)=(il2) f d,(S2(x ~)\Igg(X ,)]>" (4.29b) 

Here, the following notation is used: 

Ioo(Xl~) = d*(x)do(~) (4.30a) 

Igg(X ~)=d*(x)dg(~) (4.30b) 

Iog(X ~) = d*(x)dg(~) (4.30c) 

Igo(X[~) = d*~(x)do(g) (4.30d) 

and the matrices S~ and $2 are defined by 

Si(xll~) 

=(( -Rog(xl~) 
M*(x)/M_~(x))Rog(xl{) 

sdxl~) 

:( -Roo  i ) 
\ (Ms* (x)/M_g (x)) Roo (x I f) 

(M*~(x)/M~(x)) Rgo(X I~)~ 
-Rgo(xl~) I 

(4.314) 

-Rsg(Xl~) ]" 

(4.31b) 

It is worth noting that not only A and To, but also B 
and T are functions of x after performing the integra- 
tion of 6. 

The coherent part of the flow vector satisfies the 
energy transfer equation (4.24). For later purposes, 
however, we shall modify a little the third term on 
the right-hand side by the use of a relation similar to 
(4.26): 

<d*>Q<ag>= O((d*)<dg>)-(Q<d*>)<dg>. (4.32) 

Then, we shall have a relation similar to (4.27), 

div F[,'~ = AC(x)+W(x)+T;(xl+T,(x) 
div Fg] 

- U(x) + ~(S)~ + c.c. (4.33) 

where A c, B c, T~ and T c have the same structure as 
A, B, To and T, respectively, and only Ioo, Igg etc. are 
replaced by the following: 

I~oo(Xi~)=(d*(x))(do(~)) (4.34a) 

I~og(X ~)=(d*(x))(dg(~)) (4.34b) 

Igo(X I ~) = (d*(x))(do(~)) (4.34c) 

I~g(xi~)=(d*(x))(dg(~)). (4.34d) 

The matrix U, which comes from the term (Q(d*))(dg) 
in (4.32), is given by 

(IM-~[2<d*(x)> f d~{<Roodo(~)> + <R~dg(g))}] U(x) (-i/2) \ IMgr<d*(x)> I d~{<Roodo(~)>+ <R~d~(~)>} ]" 
(4.35) 

Here, the argument (xl~) is suppressed in the matrix 
elements of R. 

The subtraction of (4.33) from (4.27) gives the 
incoherent part of the flow vector as 

div F!~ = Ai(x)+ Bi(x)_t_Tio(x)+ Ti(x) 
div F~] 

+U(x)+c.c. (4.36) 

Notice that F~o and F~ are independent of the source 
I[(S)]] explicitly but related to it through U(x). The 
column matrices A i, W, T~ and T i have the same 
structure as A, B, To and T respectively, but depend 
upon the difference of the expressions (4.30) and 
(4.34) having the same double subscripts. 

5. Discussion and concluding remarks 

5.1. The basic wave equation 
We started with equation (3.1) instead of the 

equation of T-T type which was assumed in the 
previous works mentioned in the Introduction. The 
new approach is required for the following reasons. 

First, it seems that diffuse scattering plays sig- 
nificant roles in relevant experiments. In good 
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crystals, in which the amount per unit volume may 
not be large, the interference fringes in topography 
and/or  the oscillatory profiles in goniometry have 
less contrast than the theoretical prediction for ideally 
perfect crystals. This is particularly true for higher- 
order reflections. [For examples, see Wada & Kato 
(1977) or Deutsch & Hart (1985).] The phenomena 
can be understood in principle from the fact that the 
diffuse scattering is essentially kinematical whereas 
the Bragg reflection is dynamical. In less-perfect 
crystals, also, there is evidence that the diffuse scatter- 
ing is reflected by the Bragg net plane (Kashiwase, 
Kainuma & Minoura, 1982). Therefore, it is desirable 
to develop the theory of dynamical diffraction associ- 
ated with diffuse scattering in a unified framework. 
The theory using the T-T approximation cannot treat 
properly these phenomena, because it assumes a 
single optical path for each of the O and G waves 
at the beginning. 

Secondly, the equation of T-T type is a hyperbolic 
differential equation in which the Green function (the 
regular solution for a point source) cannot be defined 
in the true sense (e.g. Sommerfeld, 1949). On the 
other hand, the concept of the Green function is 
extremely useful for dealing with wave propagation. 
For these reasons, in this paper, wave equations of 
either elliptic type [(3.1)] or parabolic type [(3.4)] 
were adopted. 

5.2. Comparison with the previous theory 

In this section, we shall discuss the theoretical 
framework. The paper of Kato (1980b) is referred to 
as P. 

First, we shall compare (4.15b) with equation (P- 
10) regarding the averaged wave field. Then, we notice 
that the terms related to the skew components of the 
R matrix (4.16) is missing in the previous treatment. 
They are proportional to (Q(x)Q(~)) which are given 
in expressions (4.3a) and (4.3b). When the crystal is 
very perfect the magnitude, estimated by E 2 - E  2~- 
((gu)2), is small. Also, in another extreme case, each 
of E2 and E must be very small because of the 
randomness of the lattice phase. Nevertheless, if the 
crystal is of intermediate perfection, the omitted terms 
may give a correction to the coupling constant of the 
wave equation. 

The terms related to the diagonal elements, Roo 
and Rgg, have expressions similar to the correspond- 
ing ones of (P-10). The difference will be discussed 
in the next subsection. They give a correction to the 
(complex) polarizability of the crystal which is 
included in k 2 of (3.1). As in the previous theory, 
essentially, they bring about an attenuation of the 
coherent wave field. 

Next, we shall compare the expressions for the 
energy flow. Taking (P-16) and the present formula 
(4.22) or (4.27), we notice again the lack of the terms 

relevant to the Sl matrix [ (4.31 a)]; and, consequently, 
(P-16) is missing the term B of (4.27) which is given 
essentially by the skew elements of the R matrix. On 
the other hand, the two terms given by the matrix T 
correspond to the second and third terms of (P-16), 
respectively. They are related to the diagonal elements 
of the R matrix. 

The terms relevant to A and To are dealt with in 
exactly the same manner as the previous theory. 

Similar arguments can also be applied to the coher- 
ent and incoherent parts of the flow vector. If we put 
aside the terms B c and B i, the general framework of 
the two theories are identical. In particular, the fact 
that the attenuation of the coherent part is com- 
pensated exactly by supplying the energy to the inco- 
herent part is reserved also in the present theory. The 
matrix U in (4.33) and (4.36) describes this situation. 

5.3. Comparison of individual terms 

As an example, we shall take up the term involving 
Roo on the right-hand side of (4.15b). With the use 
of (4.2a) and (4.2b), it has the form 

In = ( 1 -  E 2) ~ d~M_g(x)Mg(~)r (x -~)  

x ( G~(x I ~)do(~)). (5.1 a) 

We shall rewrite this using (3.2) and the relation in 
the footnote on p. 4 and the expression 

Ggg(Xl~)=Gsg(Xl~) exp[i~,s(x-~)].  (5.1b) 

After sorting out all phases of the carder waves, we 
have 

In = exp [ iko x]( 1 - E2)(2k)2KgK_g 

x J' d~r(x- ~)(Ggg(x I ~)ao(~)). (5.1 c) 

The corresponding one in (P-10a) can be written in 
the form 

Ip = - (  1 - E2)(2ik )Kgg_g ~ dr/g( r/)(ao( So, sg - r~ )). 

(5.2) 
Here, (2ik) is a multiplicative factor for adjusting the 
scale [see (3.4)]. The essential differences of Ip from 
In are (i) the omission of the Green function and (ii) 
that the integration is one-dimensional. Incidentally, 
the function g(r/) is the intrinsic COF of the lattice 
phase along the coordinate s,, which is r ( x - ~ )  in 
the three-dimensional case. 

These differences stem from the same origin; the 
T-T approximation. In fact, (5.2) can be derived from 
(5.1c) by assuming 

Ggg(xl~)=(2ik)-182(Xg-~g) (5.3a) 

where t~ 2 is the two-dimensional 8 function and xg 
and ~g are the components of x and ~ perpendicular 
to the Sg direction. The expression (5.3a) is the solu- 
tion of (2ik)(O/dsg)Crgg = 8 (x -~) ,  which is nothing 
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else but an approximate form of (4.8) for the Green 
function under the T-T approximation and the 
omission of the Bragg reflection. 

The full argument must be postponed to the future 
because the plausible form of the Green function is 
not worked out. Nevertheless, it is anticipated that 
the Green function will describe a diffuse wave propa- 
gation. This diffuseness is caused not only by diffuse 
scattering but also the dynamical diffraction which 
spreads over the Borrmann fan. 

In this context, the optical paths used in the older 
papers (Kato, 1976a, b) are closer to the present ones. 
There, stepwise paths (due to the Bragg reflection) 
between x and s ¢ were assumed (see Fig. 1) rather 
than a straight path in the paper P. Now, the mathe- 
matical complications and approximations involved 
are eliminated by introducing the Green function. 

The same argument can be applied to the term 
involving Rgg in (4.15b). At this stage, the lack of the 
skew term in the previous treatment can be interpreted 
as a consequence of the approximation Go~ = Ggo = O. 

In the previous work, furthermore, the amplitude 
(ao(So, sg - rl)) in (5.2) is replaced by (ao(So, sg)). This 
approximation, which is called the gentle amplitude 
(GA) approximation, enables us to reduce the 
integro-differential equations (P-10) and (P-16) to 
the simple differential equations (P-12) and (P-17), 
respectively. The present theory also can be simplified 
in the same way by using ao(X) instead of ao(~) and 
neglecting the correlation of the Green function and 
the average wave field. Then, one needs an effective 
correlation volume defined by 

v=~ ~'(x-~)(Ggg(X ~)) d~. (5.4) 

It is worthwhile to comment that v must be A depen- 
dent whereas the intrinsic correlation length r, which 
is equivalently introduced in the previous theory, is 
strictly A independent. 

5.4. Concluding remarks and future developments 

This paper has dealt with exactly the wave propaga- 
tion and the energy flow when Bragg reflections are 
associated with diffuse scattering within the model of 
the GRV for the lattice phase. The model does not 
imply a small spatial fluctuation of the lattice phase. 
Also, no perturbation theory is used. The theory is 
free from the T-T approximation and the GA 
approximation. This approach seems necessary in 
order to develop a unified theory to cover large 
varieties of lattice distortions. 

Much has to be done, however, for future develop- 
ments to obtain more practical theories suitable for 
specific topics. In such studies, the present theory 
will serve as a starting point. 

Finally, the present theory is strictly classical, 
although the mathematical techniques resemble those 

in quantum field theory. It seems necessary to keep 
this point in mind. 

APPENDIX 

The functional derivative of the Green function and the 
wave field 

We shall start with equation (4.8). The notation ~ is 
used for the space coordinate x. The inverse of L is 
written L -~. Then, 

G(~I~')=L-1(~)8(~-~')I (A.la) 

= L-~(~')8(~'- ~)I (A.lb) 

=G(~' 6)- (A.1 c) 

Equation (A.lc) implies the reciprocity of the Green 
function. It is obvious that the statistical Green func- 
tion also has the same property. 

Taking the functional variation of (4.8) with respect 
to C(~), we shall see that 

L(~). 8G(~I~ ' ) - - -M(~) .  ~C(~). G(~I~') (A.2a) 

where C(~) is the skew matrix 

c*(~) 

Equation (A.2a) can be rewritten as 

8G(~I~' ) : -L-~(~).  M(~).  t~C(~). G(~[ ~'). 
(A.2b) 

We multiply 8 (~-x)  from the fight-hand side and 
integrate over ~, and put 6 '=  Xo. The manipulations 
will give the relation 

8G(xlxo) = -~ G(x[~). M ( ~ ) .  8C(~) .  G(~lxo) d~. 

(A.3) 

In deriving this, (A.lb) is employed. Then, the func- 
tional derivative with respect to C(~) is given by 

(8/sC(~))G(x Xo) 

: - M _ g ( ~ ) G ( x ~ ) . ( ~  10).G(~xo). (A.4a) 

Similarly, we have 

(8/8C*(~))G(xlxo) 

The average of this equation gives (4.14) in the text. 
Multiplying J(xo) from the fight and integrating 

over dxo, we also obtain the functional derivatives 
for the wave field as 

(8/SC(~))d(x)=-M_~(t~)G(x,~) . (O 0 ; ) . d ( ~ )  

(A.5a) 
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(8/SC*(~))d(x)=-M~(~)G(x ~) . (Ol Oo) .d(~). 

(A.5b) 
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Abstract 

It can be proved mathematically that the initial phase 
disorder in the wave of a one-dimensional displacive 
modulation introduces additional variations in the 
structure of reciprocal space and, as a result, causes 
characteristic diffraction streaks. Using a simple two- 
dimensional model, the occurrence of such streaks is 
confirmed in optical diffraction patterns. Electron 
diffraction streaks from two crystals with incom- 
mensurately modulated structures are presented and 
explained as the diffraction effect of the phase dis- 
order. 

Suemoto, Shibata, Onoda & Fujiki, 1986). It was 
proposed that there is a group of reflection planes in 
reciprocal space caused by disorder in the initial 
phase of the modulation wave. 

In this paper, starting from the formula given by 
de Wolff (1974), it is shown that the initial phase 
disorder (IPD) changes the structure of reciprocal 
space and hence some extra diffraction streaks arise. 
This is also confirmed by optical diffraction for simple 
two-dimensional models. Finally, electron diffraction 
streaks observed from two kinds of crystals are shown 
and discussed from the viewpoint of IPD. 

1. Introduction 

The wave of structural modulation is usually treated 
as a plane wave except for discommensurate-type 
modulation (Janssen & Janner, 1987; Steeds, Bird, 
Eaglesham, McKernan, Vincent & Withers, 1985). 
However, when the initial phase is not constant but 
varies depending on position in real space, an addi- 
tional diffraction effect is expected. Recently, some 
streaks passing through the satellite spots were found 
in the electron diffraction patterns of some materials 
with a displacive modulated structure (Wu, Li & 
Hashimoto, 1990;  Suzuki, Tanaka, Ishigame, 

* On leave from Institute of Physics, Academia Sinica, Beijing 
100080, People's Republic of China. 

0108-7673/91/010011-06503.00 

2. Reciprocal space of the crystal with IPD 

de Wolff (1974) has given a formula to calculate the 
structure factor in the case of a one-dimensional 
displacive modulation. If the modulation wave is 
sinusoidal, atomic positions can be written as 

rj = rio+ Ujo sin 2~r(r - %), (1) 

where rj is the average position of the jth atom, Ujo 
the displacement amplitude, r the atom coordinate 
in four-dimensional space and % the initial phase. 
The structure factor is 

F( hklm ) = ~f~ exp 2 7ri[ hxjo + kyjo + Izjo 
J 

+m(aj+½)]Jm(2~g.u), (2) 
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